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Abstract

This work builds an effective AI-based message
generation system for diabetes prevention in rural
areas, where the diabetes rate has been increasing
at an alarming rate. The messages contain informa-
tion about diabetes causes and complications and
the impact of nutrition and fitness on preventing di-
abetes. We propose to apply reinforcement learn-
ing (RL) to optimize our message selection pol-
icy over time, tailoring our messages to align with
each individual participant’s needs and preferences.
We conduct an extensive field study in India which
involves more than 1000 participants who are lo-
cal villagers and they receive messages generated
by our system, over a period of six months. Our
analysis shows that with the use of AI, we can de-
liver significant improvements in the participants’
diabetes-related knowledge, physical activity lev-
els, and high-fat food avoidance, when compared to
a static message set. Furthermore, we build a new
neural network based behavior model to predict be-
havior changes of participants. By exploiting un-
derlying characteristics of health-related behavior,
we manage to significantly improve the prediction
accuracy of our model compared to baselines.

1 Introduction
Non-communicable diseases (NCDs) such as cardiovascular
disease, diabetes, and cancer, are among the top health chal-
lenges of the century. According to WHO, NCDs kill 41 mil-
lion people each year, equivalent to 74% of all deaths glob-
ally. Notably, 85% of premature deaths from NCDs occur
in low- and middle-income countries [World Health Organi-
zation, 2018]. Fortunately, these serious diseases are largely
preventable. According to WHO, NCDs are preventable with
three lifestyle changes: eat healthy food, increase physical
activity, and avoid tobacco. Yet barriers in underprivileged
regions often prevent engagement in these activities, particu-

larly poor education about the disease, lack of social support,
and limited healthcare access.

We propose to overcome some of these barriers by building
a new AI-based system which can help in improving diabetes
risk behavior of people in such underprivileged regions. We
build an effective messaging intervention system, that dynam-
ically sends personalized messages to participants (through
Whatsapp). These messages contain information about dia-
betes causes and complications, and the impact of nutrition
and fitness on preventing diabetes. We chose Whatsapp to
transmit our messages since mobile phone uptake is high in
India, and Whatsapp is an essential communication channel
that is accessible to almost everyone. Existing non-profit
healthcare programs often pre-design fixed non-personalized
messages [Pfammatter et al., 2016; Ranjani et al., 2020]. Our
work seeks to improve this using AI, leveraging techniques
in RL to optimize our message selection policy and tailor-
ing sent messages to align with each individual participant’s
needs and preferences.

We provide four main contributions. First, we build an on-
line diabetes-targeted intervention system that automatically
sends out messages to participants in our study on a weekly
basis. Each week, messages sent to each participant are deter-
mined based on behavior dynamics of the participant. In the
same week, our system collects information about changes
in behavior of participants through a question/answer mecha-
nism, which is leveraged to improve our message generation
in later weeks. Second, we model the problem of optimizing
message generation as a RL problem and develop a RL algo-
rithm for solving this problem, tackling concrete real-world
challenges exhibited in our problem domain. Our algorithm
is an extension of DQN [Mnih et al., 2015], a well-known RL
method, with adaptations to handle simultaneous interactions
with multiple participants in an online learning fashion.

Third, we run an extensive field study that involves over
1000 participants from local villages that received messages
generated by our system for more than six months. Our anal-
ysis shows that there are significant improvements in the par-
ticipants’ diabetes-related knowledge, physical activities, and
high-fat food avoidance at the end of our field study. Finally,



we build a new neural net-based behavior model to predict
participants’ behavior changes, leveraging the data collected
during our study. We show that our model, which exploits
inherit differences in behavior changes across different types
(knowledge, physical activity, and food consumption) obtains
the best prediction accuracy compared to baselines.

2 Related Work
Reinforcement Learning in Healthcare. RL has been
widely used in tackling various problems in healthcare. In
particular, RL was used in developing effective personalized
treatment plans which can be adaptive to the dynamic changes
of clinical states. There are several works in this line of
research including studies of chronic diseases such as can-
cers [Zhao et al., 2009; Ahn and Park, 2011; Hassani and
others, 2010; Padmanabhan et al., 2017], diabetes [Bothe et
al., 2013; Daskalaki et al., 2013; Noori et al., 2017; Asoh et
al., 2013], anemia [Gaweda et al., 2005; Gaweda et al., 2006;
Martı́n-Guerrero et al., 2009], and HIV [Yu et al., 2019;
Parbhoo et al., 2017]. In addition, there is an increasing
number of studies that applied RL techniques to problems in
critical care such as generating optimal sepsis treatment poli-
cies [Saria, 2018], and anesthesia control [Moore et al., 2014;
Sinzinger and Moore, 2005]. RL was also used in automated
medical diagnosis [Sahba et al., 2008; Ghesu et al., 2017;
Chu et al., 2016; Kao et al., 2018]. We refer readers to [Yu et
al., 2021] for a complete literature review.

The research topic that is closest to our work is the prob-
lem of health management. Specifically, there are works on
using RL to optimize messages sent to users to improve their
physical activities [Hochberg et al., 2016; Yom-Tov et al.,
2017]. They essentially developed a mobile phone app that
runs in the background of patients’ smartphones and auto-
matically collects data of physical activity performed by pa-
tients. They then run RL that utilizes the collected data to
determine which SMS message is likely to increase the phys-
ical activity of the patient. This approach requires consen-
suses from patients to record all of their physical activities.
Our work focuses on developing a personalized text message
mechanism which targets not only physical activities but also
diabetes-related knowledge and food consumption. This is
accomplished through a automatic message/question/answer
process in which participants can opt to respond or not.

Knowledge Tracing. Our behavior modeling of partici-
pants is related to knowledge tracing, an important research
research areas for enhancing personalized education [Corbett
and Anderson, 1994]. The main task is to build machine mod-
els of the knowledge of a student as they interact with course-
work. Recently, given the rise of deep learning, there have
been several works that utilized deep neural nets to model the
student learning [Piech et al., 2015; Yeung and Yeung, 2018;
Xiong et al., 2016; Ghosh et al., 2020; Pandey and Karypis,
2019]. Our work, on the other hand, focuses on building a
ML model of behavior change of participants in our study as
they interact with our intervention system. We target not only
diabetes-related knowledge improvement of participants, but
also their physical activity and food consumption dynamics,
as influenced by our messages sent to them on a weekly basis.

3 Personalized Message-Generation System

In this work, our goal is to optimize the impact of our message
intervention program on participants’ lifestyle behavior. The
challenge is that participants have varied lifestyle and also
may have various kinds of reaction to our messages. There-
fore, it is important that we can personalize the message se-
lection policy for each individual participant. We propose to
apply techniques in reinforcement learning to serve this pur-
pose. Overall, given a message bank as an input, our RL-
based system runs for a number of rounds (i.e., weeks). In
each round, our system selects a pair of messages for each
participant and sends out these messages to the participants.
In addition, the system sends out a separate pair of questions
to each participant and collect answers from them. These
questions collect information regarding the changes in the
participants’ lifestyle on a weekly basis. Our system then
uses the participants’ responses to these questions as feed-
back to update our message selection policy. The overview of
our system is illustrated in Figure 1.

Our messaging process has three distinct phases. In phase
one of participant sign-up, health workers visit villagers in
person. The health workers (i) sign up people for receiv-
ing our health-related messages; (ii) provide detailed instruc-
tions of the program to the participant; and (iii) distribute
initial questionnaire and collect answers from participants.
The initial questionnaire includes questions about the partic-
ipants’ demographics, family health-related history, knowl-
edge about diabetes, physical activities, and food intake, etc.
We use participants’ responses to this questionnaire to build
the initial state of participants.

In more detail, each participant’s state consists of “scores”
for the five categories: (a) healthy food intake, (b) un-
healthy food/tobacco/alcohol intake, (c) fitness/physical ac-
tivity level, (d) diabetes cause knowledge, and (e) diabetes
complication knowledge. The scores take value in {1, 2, 3}
where 1 means “Low”, 2 means “Medium”, and 3 repre-
sents “High”. For example, the state for a participant can be
(1, 3, 2, 2, 3) where the score for the health food intake of this
participant is 1, it means that this participant rarely consumes
healthy food such as vegetables and fruits. Thus, this score
implies that this participant should receive messages that en-
courage the participant to eat more healthy foods.

In phase two, participants receive two messages and two
questions each week, each message or question targets one of
the above five categories. The sets of messages and questions
are carefully designed in local language by domain experts.
In this phase, our message-based intervention system inter-
acts with participants via Whatsapp. The flow of the weekly
interactions with each participant is illustrated in Figure 2 and
an example of weekly messages/questions is provided in Fig-
ure 3. As we show in Figure 3, the purpose of the questions
asked in each week is to determine the impact of the mes-
sages sent out in the prior week on the participants’ behavior
change. We remark that our system sends out only two mes-
sages and two questions on two days per week (i.e., Tuesdays
and Fridays and one message/question per day) for the sake
of participants’ comfort. Overloading the participants with
messages/questions can potentially disrupt participants’ daily
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Figure 1: Personalized Message-based Intervention System Overview
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Figure 2: Weekly Message/Question Flow

Message example on week k: (Fitness) You can help avoid diabetes by 
being physically active. Walk to the temple or shops, climb stairs. 
Walk briskly or exercise for 30 mins daily. 

Question example on week k+1: In last week, how often would you 
have done any form of exercise (Yoga/Running/Jogging/In 
Gym/Aerobics etc.)?
Answer format:  1. Daily days 3. Selective days/weekends

2. Alternate 4. Never

Figure 3: An Example of Weekly Messages and Questions

activities, causing unnecessary burden, decreasing their en-
gagement in our program. Finally, responses of participants
to our questions is used to update the participants’ state. Our
system then leverages the participants’ updated state to gen-
erate new messages and questions in the following week.

Finally, in phase three we perform a post-study analysis, in
which our health workers meet participants in person again
and conduct the same questionnaire as in phase one. Our goal
is to have a complete comparison of the behavior changes in
beneficiaries before and after participation in our program.

4 RL-based Message Generation Algorithm
The core of our message-based intervention system is the
RL agent that actively selects weekly messages and ques-
tions for individual participants in a personalized manner
based on their previous responses. We adopt ideas from Deep
Q-Learning (DQN) [Mnih et al., 2015], a well-known RL
method in literature, to build our RL agent. However, we face
the following challenges. First, RL methods are effective typ-
ically when they are pre-trained before the actual real-world

deployment. However, in this project, there is no historical
participant data that can be used for pre-training RL meth-
ods. Our RL agent has to be trained directly on the job during
limited weekly interactions across only 25 weeks. Second,
ideally, we can treat each participant as a separate Markov
Decision Process and train a separate RL agent for each par-
ticipant. However, our system can only obtain a single tra-
jectory of state transition for each participant, which is ex-
tremely limited information for building an RL agent for each
individual. Conversely, a single RL agent for the whole popu-
lation may fail to capture the diverse behavior of participants.
Third, traditionally, RL models are iteratively trained by se-
quentially acquiring different episodes of interactions with
the environment. However, here our system interacts with
multiple participants in parallel across a single episode.

Given these real-world deployment challenges, we create a
new variant of DQN with the following revisions. First, we
provide a warm-up stage in which we “pre-train” our model;
we leverage the participants’ responses to the initial question-
naire to initialize values of learnable parameters of our model.
Intuitively, these values are determined such that our model
generates messages for each participant that target state cate-
gories in which the participant has low scores. For example,
if the participant has low physical activity level (i.e., score is
1), the model will likely select a message that encourages the
participant to do more physical exercise. Second, based on
initial state scores, we use a clustering method to divide par-
ticipants into three groups such that participants in the same
group have similar initial states. We aim to train a single RL
agent for each group, anticipating similar in-group behavior.
Note that this means the RL agent is trained based on data
collected from all participants within a group; however, mes-
sages and questions selected by the RL agent for each partici-
pant are determined by their individual state. By doing so, we
use enough data to train our model while still personalizing
messages. Third, we modify the DQN training process to al-
low multiple updates of model training in each step (a week)



Algorithm 1: Adaptive Message Generation.
1 Calculate participant initial states based on their

responses to the base questionnaire {s(i)0 };
2 Warm-up step: Pre-train action-value network Q with

parameters θ based on initial states of participants;
3 Initialize target action-value network Q̂ with θ̂ = θ;
4 for t = 1 → T do
5 for i = 1 → N do
6 With prob. ϵ, select a random action (i.e., a

pair of messages) a(i)t for participant i;
7 With prob. 1− ϵ, select

a
(i)
t = argmaxa Q(s

(i)
t−1, a, θ);

8 if t > 1 then
9 Send questions q(i)t−1 and obtain answer(i)t−1;

10 Update participant state:

s
(i)
t = Update

(
s
(i)
t−1, q

(i)
t−1, answer(i)t−1

)
;

11 Calculate reward r
(i)
t−1 based on state

update and add transition(
s
(i)
t−1, a

(i)
t−1, s

(i)
t , r

(i)
t−1

)
to D;

12 for n = 1 → numUpdate do
13 Sample random minibatch of transitions

(sj , aj , sj+1, rj) from D;
14 Perform a gradient descent step to update θ on[

rj + γmax
a′

Q̂
(
sj+1, a

′, θ̂
)
−Q (sj , aj , θ)

]2
;

15 if t mod step = 0 then Update θ̂ = θ ;

and simultaneous state and message updates for all partici-
pants. The details are presented in Algorithm 1, which runs
separately for each participant group.

Essentially, in each week t, each participant i is associ-
ated with a state s

(i)
t−1 which represents the latest status of

the participant lifestyle behavior as we discussed previously
in Section 3. The goal of Algorithm 1 is to train a neural
net model with unknown parameters θ to predict the q-value
Q(s

(i)
t−1, a, θ) of the state-action pair (s(i)t−1, a). Here, an ac-

tion a represents a pair of messages selected from the weekly
message bank. Intuitively, the q-value Q(s

(i)
t−1, a, θ) is the to-

tal expected reward that we receive if the action a is chosen
for participant i given the latest state value s(i)t−1. This total ex-
pected reward captures the long-term impact of the selected
action on the behavior change of participant i in the future.
Warm-up. In the warm-up phase, we pre-train our neural
net model by minimizing the following MSE:

θinit ∈ argmin
θ

1

N

N∑
i=1

∑
a∈A

[
Q(s

(i)
0 , a, θ)− init.value(s(i)0 , a)

]2
where init.value(s(i)0 , a) is the estimated importance score of
action a for participant i given the participant initial state
is s

(i)
0 . Note that this initial state is estimated based on

the participant’s response to the questionnaire. The score
init.value(s(i)0 , a) is determined such that this value will be
high if the action a includes messages that target categories
that the participant has low scores, and vice versa. For ex-
ample, if the participant has score 1 for the physical activity
category in s

(i)
0 , the value of init.value(s(i)0 , a) is 3 if the ac-

tion a has physical activity-related messages. Here, N is the
total of participants in the considering group and A is the set
of all possible actions (i.e., pairs of messages).
Weekly message/question selection. In the weekly mes-
sage/question phase, at every week t, for every participant i,
with a probability of ϵ > 0, we select an action a

(i)
t for partic-

ipant i uniformly at random. And with a probability of 1− ϵ,
we select the optimal action a

(i)
t = argmaxa Q(s

(i)
t−1, a, θ).

This ϵ-greedy approach allows us to balance between explo-
ration and exploitation during the learning process. We then
send a pair of questions q

(i)
t−1. These questions are used to

measure the impact of messages the participants received in
the last week t − 1. We remark that if we receive responses
from participants for these questions quickly, we can immedi-
ately use these responses to update participants’ state and then
generate new messages for this week. However, this is not the
case due to delayed updates, meaning that we have to send out
messages for this week prior to receiving responses. There-
fore, we have the following message/question procedure:

• Week t = 1: we send out messages a(i)1 based on s
(i)
0 .

• Week t = 2: we send out messages a
(i)
2 based on state

s
(i)
1 = s

(i)
0 . We then send out questions q

(i)
1 regarding

impact of a(i)1 and receive responses answer(i)1 . We up-
date state s

(i)
2 = Update(s(i)1 , q

(i)
1 , answer(i)1 ).

• Week t = 3: we send out messages a
(i)
3 based on

state s
(i)
2 . We send out questions q

(i)
2 regarding im-

pact of a
(i)
2 and receive responses. We update state

s
(i)
3 = Update(s(i)2 , q

(i)
2 , answer(i)2 ), and so on.

Note that, in reality, participants may not respond every week.
When we do not receive any answer from a participant, there
will be no state change for that participant, i.e., s(i)t = s

(i)
t−1.

Model training update. Similar to DQN, we maintain a
replay buffer D of historical interactions with participants.
At every step t, transitions

(
s
(i)
t−1, a

(i)
t−1, s

(i)
t , r

(i)
t−1

)
of every

participant i will be added to D. Here, the reward r
(i)
t−1 is

calculated based on the state change (s
(i)
t−1, s

(i)
t ). For exam-

ple, if the physical activity score part of the state is updated
from a value of 1 in s

(i)
t−1 to a value of 2 in s

(i)
t , then the re-

ward r
(i)
t−1 = 1. This reward value indicates that the action

a
(i)
t−1 had positive impact on the participant i’s exercise be-

havior. If multiple categories in the state have their scores
changed, then the reward is computed as the sum of rewards
over all these categories. This buffer D is used to update the
neural net parameters θ. In addition to D, we also maintain
a target network Q̂ with target parameters θ̂. The values of



the parameters θ̂ are updated periodically based on the net-
work Q. The replay buffer D and target network Q̂ are the
main ideas of DQN that help in stabilizing and improving
the q-learning process. Finally, at each week t, after updat-
ing D with new transitions, we run a number of iterations
numUpdate to perform gradient descent updates on θ based

on the loss
[
rj + γmax

a′
Q̂
(
sj+1, a

′, θ̂
)
−Q (sj , aj , θ)

]2
which is computed based on a mini-batch of transitions
(sj , aj , sj+1, rj) sampled from D.

5 Real-world Deployment
For real world deployment, our primary goals were to lay the
groundwork for our message intervention program. These
included completing all the required preparations, obtaining
IRB approval, working with domain experts to design a bank
of messages and questions, completing front-line worker
training, collecting baseline data, and testing the transmission
system. In addition, our critical objectives included recruiting
beneficiaries and commencing the message transmission.

In January and February of 2022, we successfully set up the
automated messaging pipeline by linking our Google Cloud
VM to our partner’s cloud storage, allowing for seamless and
automatic transmission of messages and questions selected by
our RL system to participants. We also completed Facebook
business verification, obtained approval for WhatsApp mes-
sage transmission, and developed the AI tool. Crucially, we
ensured that key people from multiple project partners could
seamlessly share de-identified data files and responses from
the villagers each week. Finally, we completed training for
20 front-line workers on the project implementation.

In February and March of 2022, our front-line workers
collected behavior surveys (questionnaire) from 1698 partic-
ipants who are local villagers in India. We successfully com-
pleted a pilot test of the diabetes-related AI messaging bot
to verify functionality of the overall system. In the end, we
successfully recruited 1049 participants to opt-in to receive
the diabetes messages. To compare with the existing static
message program in which all participants received the same
sequence of messages, we randomly divided participants into
two groups: 548 participants joined our AI-based message
program (we call this group the AI group) and 501 joined the
baseline static message program (the non-AI group).

In March of 2022, we began the message transmission for
the first batch of users with those in the AI cohort receiv-
ing two messages and two questions weekly on Fridays and
Tuesdays. Participants in the non-AI group received two mes-
sages on Thursdays and Mondays each week. We remark
that all participants did not opt-in at the very start but grad-
ually joined over a couple of weeks. The villagers in the
AI group responded to questions asked — engagement lev-
els were around 35% past week 8 of the study.

The study ended in November 2022, at which time the
post-study questionnaire was sent to the participants. This
is the same questionnaire used at the beginning of our study.
Based on responses of participants, we are able to evaluate the
effectiveness of the AI system by comparing the performance
of participants between the AI and non-AI groups.

Figure 4: Knowledge Comparison. We plot results on cause knowl-
edge and complication knowledge (of diabetes). Overall, AI group
shows a substantial improvement in both cause and complication
knowledge scores. In particular, AI group outperforms the non-AI
group significantly in cause knowledge. In complication knowledge,
non-AI group has a higher percentage of participants who have pos-
itive score changes but also a higher percentage of participants who
have negative score changes — In the end, the AI-group obtains a
higher mean score improvement compared to the non-AI group.

6 Post-Study Intervention Result
We analyze behavior changes in both AI and non-AI partic-
ipant groups based on their responses to the same question-
naire before/after joining our study. We divide questions into
different types that focus on knowledge, physical activity, and
dietary. Responses to each question are converted into three
scores: 1 (low), 2 (medium), and 3 (high). The final score of
a participant in each category is averaged over all questions
in that category. We compute the score difference between
the pre- and post-studies for each participant. Positive score
changes imply participants improve their behavior at the end
of our study. Our analysis results are shown in Figures 4, 5,
6 where the x-axis represents the participants and the y-axis
represents the score change.

To compare our AI versus the non-AI intervention, we
consider three statistics: (i) mean score change across each
population; (ii) percentage of participants who improve their
scores; and (iii) percentage of participants who decrease their
scores. For example, in Figure 4 for the AI group, 58.3% of
the participants have a positive score changes while 19.4%
have a negative score changes in the diabetes-cause knowl-
edge type. In addition, the mean score change is 0.387.
For the AI group, we only consider participants who have
response rates of at least 50%. Our rationale is that low-
response rate participants do not engage in the study, and
thus, their behavior will not be impacted by the AI messages.

7 Human Behavior Modeling
We aim to build a predictive model characterizing how par-
ticipants behave in response to our message intervention pro-
gram. Such predictive model could be used in the future to



Figure 5: Physical Activity Comparison. We plot results on
daily average exercise time, incidental exercise (this refers to ex-
ercises incurred throughout daily activities, such as choosing to
walk for errands, walking around the house, and taking stairs in-
stead of elevators, and sport/workout/walking). Overall, AI group
shows a substantial improvement in both average exercise time and
incidental exercise, which outperforms the non-AI group. In the
sports/workout/walking type, non-AI group has a higher percentage
of participants who have positive score changes; nevertheless, the
mean score change is not much different.

create simulated data to refine our message selection policy.
Feature Extraction. We use data collected from our field
study for this modeling task. We divide the questionnaire and
the weekly messages/questions into 17 finer categories. The
questionnaire responses are then used to compute scores in
each of these categories for all participants, which are then
used as features. Additionally, we include the message and
question ID that the participant received, along with the cat-
egory that they belong to. To provide the model with more
context, we include the previous week’s information for all
these categories, along with the responses received from par-
ticipants. Lastly, we also include a coarser categorization fea-
ture, indicating whether the question asked is regarding one
of three types: knowledge, physical activity, or dietary.
Model Description. The prediction task, then, is to use the
extracted features to predict participants’ responses to the
questions they receive. We cast this problem as a multi-
classification problem. In each week, for each participant,
we take each question and other features associated with that
participant as an input to produce a prediction of the corre-
sponding response of that participant (which is categorized
into three levels 1 (low), 2 (medium), and 3 (high)).

We consider three different models as baselines for this
task: (i) the classic logistic regression; (ii) a simple neural
network (NN) with two fully-connected linear layers; and (iii)

Figure 6: Dietary Comparison. We plot results on unhealthy
food, fruit, and vegetable consumption. Overall, in the unhealthy
food consumption category, the AI group shows a substantially
more improvement compared to non-AI group — (25% improve-
ment, 13.2% deterioration, 0.236 mean) versus (17.5% improve-
ment, 13.8% deterioration, 0.073 mean). In the fruit/vegetable cat-
egory, we observe somewhat negative changes in both non-AI and
AI groups. That is, a higher percentage of participants had negative
score changes compared to positive score changes. However, the
mean score changes in both groups are very close to zero.

a Long Short Term Memory (LSTM) based model [Hochre-
iter and Schmidhuber, 1996] (i.e., a LSTM block followed by
a simple linear layer). We remark that LSTM is commonly
used in deep knowledge tracing [Piech et al., 2015].

Importantly, we observe participants’ behavior changes
vary across different types of diabetes-related activities. As
a result, a single behavior model may perform poorly in pre-
dicting responses to various types of questions. Therefore, we
aim to build predictive models that can differentiate behavior
changes of three different types: food consumption, physical
activities, and diabetes-related knowledge. More specifically,
we propose the three models: (i) type-trifecta logistic regres-
sion — this model consists of three separate logistic regres-
sion components, each produces predictions for responses in
one of the aforementioned types; (ii) type-trifecta simple neu-
ral network — this model consists of three separate neural
net components, each is a simple 2-layer neural net; and (iii)
type-trifecta LSTM — this model has a shared LSTM block
followed by three separate blocks of linear layers.

Accuracy Evaluation. All of our behavior prediction mod-
els were trained on dual Intel E5-2690v4 processors. All ex-
periments were trained in PyTorch using cross entropy loss
and the Adam optimizer. For our experiments, we collect
all results over 30 random seeds (resulting in different model
initializations and test/train splits) and report the mean along



Model Acc. Train Acc. Test

Simple NN 0.533± 0.016 0.525± 0.022
LSTM 0.541± 0.022 0.533± 0.030

Logistic Regression 0.524± 0.009 0.515± 0.018
Simple NN

Type Trifecta 0.59± 0.005 0.58± 0.019

LSTM
Type Trifecta 0.583± 0.006 0.575± 0.019

Logistic Regression
Type Trifecta 0.585± 0.005 0.578± 0.018

Table 1: Evaluation with no noise, no predicted feature insertion.

Model Acc. Train Acc. Test

Simple NN 0.536± 0.017 0.528± 0.022
LSTM 0.548± 0.023 0.542± 0.028

Logistic Regression 0.525± 0.009 0.516± 0.018
Simple NN

Type Trifecta 0.59± 0.005 0.58± 0.019

LSTM
Type Trifecta 0.584± 0.005 0.576± 0.019

Logistic Regression
Type Trifecta 0.584± 0.005 0.578± 0.019

Table 2: Evaluation with noise, but no predicted feature insertion.

Model Acc. Train Acc. Test

Simple NN 0.531± 0.014 0.523± 0.019
LSTM 0.548± 0.023 0.535± 0.029

Logistic Regression 0.53± 0.010 0.522± 0.019
Simple NN

Type Trifecta 0.592± 0.005 0.578± 0.019

LSTM
Type Trifecta 0.579± 0.008 0.572± 0.022

Logistic Regression
Type Trifecta 0.587± 0.006 0.577± 0.019

Table 3: Evaluation with noise and predicted feature insertion.

with the standard deviation. We remark that there are a lot
of missing responses in our training data set (response rates
of participants is less than 40%). Therefore, in our exper-
iments, we examine two options: one is to simply encode
missing responses as “−1” and the another is to replace miss-
ing responses by our model predictions. In addition, we try
adding noise (i.e., zero mean Gaussian noise) to participants’
responses. The purpose is to examine if this noise helps in
improving the robustness of our models or not. Our predic-
tion accuracy results for all models are shown in Tables 1–3,
corresponding to three settings: (i) no noise is added to partic-
ipants’ responses and missing responses are encoded as “−1”
(Table 1); (ii) similar to (i) but Gaussian noise is added (Ta-
ble 2); and Gaussian noise is added and missing responses are
replaced with the model prediction (Table 3).

All three tables show that differentiating behavior changes

according to three different categories of food consumption,
physical activities, and knowledge significantly improves the
prediction accuracy of our models compared to the baselines.
For example, in Table 1, the type-trifecta simple NN model
obtains an averaged prediction accuracy of 59% and 58% on
the training and test sets, respectively. This is significantly
higher than the prediction accuracy of the single simple NN
model (i.e., 53.3% and 52.5%). We also observe the simi-
lar performance enhancement trend for the logistic regression
and the LSTM-based models. In addition, interestingly, un-
like in knowledge tracing [Piech et al., 2015] where LSTM-
based models are shown to be superior in predicting the
knowledge of students, our results show that the type-trifecta
simple NN model performs the best. This phenomenon per-
haps comes from the limited data availability (with missing
responses) in our domain that potentially deteriorates the per-
formance of complex models like LSTM. Lastly, we do not
observe a substantial changes in prediction accuracy of all
models when we introduce Gaussian noise to responses or in-
sert model predictions to replace missing responses.

8 Conclusion: Results and Learned Lessons
In this work, we developed an RL-based personalized mes-
saging system for diabetes intervention tailored to people liv-
ing in rural areas where access to healthcare, social support,
and education are limited. We ran an extensive field study
that involves more than 1000 local villagers participating in
our messaging program. Our post-study analysis results show
the significant benefit of our approach (compared to the exist-
ing system) in the participants’ diabetes-related knowledge,
physical activities, and high-fat food avoidance. Furthermore,
our behavior models which leverage characteristics of partic-
ipants’ responses outperform baselines including the single
LSTM model that is commonly used in knowledge tracing.

We would like to highlight some important lessons learned
from this work. First, collaborations among different part-
ners with different areas of expertise including NGOs, health
domain experts, and academics are the key to the success of
social impact projects. Second, real-world domains exhibit
various challenges that we may not be able to anticipate when
building our AI models. Continuing to improve our models
and solutions with the adaptation to rising challenges is es-
sential to the long-term impact of the project. For example,
our current RL model does not directly account for missing
responses from participants. Furthermore, answers about be-
havior are self-reported and could be misleading. We plan to
address these limitations in future work. Third, available real-
world data in this domain is extremely limited. Thus, simple
models may work better than complex deep learning models.
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Torres. A reinforcement learning approach for individu-
alizing erythropoietin dosages in hemodialysis patients.
Expert Systems with Applications, 36(6):9737–9742,
2009.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533,
2015.

[Moore et al., 2014] Brett L Moore, Larry D Pyeatt,
Vivekanand Kulkarni, Periklis Panousis, Kevin Padrez,
and Anthony G Doufas. Reinforcement learning for
closed-loop propofol anesthesia: a study in human vol-
unteers. The journal of machine learning research,
15(1):655–696, 2014.

[Noori et al., 2017] Amin Noori, Mohammad Ali Sadrnia,
et al. Glucose level control using temporal difference
methods. In 2017 Iranian Conference on Electrical En-
gineering (ICEE), pages 895–900. IEEE, 2017.

[Padmanabhan et al., 2017] Regina Padmanabhan, Nader
Meskin, and Wassim M Haddad. Reinforcement learning-
based control of drug dosing for cancer chemotherapy
treatment. Mathematical biosciences, 293:11–20, 2017.

[Pandey and Karypis, 2019] Shalini Pandey and George
Karypis. A self-attentive model for knowledge tracing.
arXiv preprint arXiv:1907.06837, 2019.

[Parbhoo et al., 2017] Sonali Parbhoo, Jasmina Bogojeska,
Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez.
Combining kernel and model based learning for hiv ther-
apy selection. AMIA Summits on Translational Science
Proceedings, 2017:239, 2017.



[Pfammatter et al., 2016] Angela Pfammatter, Bonnie
Spring, Nalini Saligram, Raj Davé, Arun Gowda, Linelle
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